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Abstract

OPTIMAL INITIATION OF a GLWB in a VARIABLE ANNUITY:

NO ARBITRAGE APPROACH

This paper offers a financial economic perspective on the optimal time (and age) at

which the owner of a Variable Annuity (VA) policy with a Guaranteed Living Withdrawal

Benefit (GLWB) rider should initiate guaranteed lifetime income payments. We abstract

from utility, bequest and consumption preference issues by treating the VA as liquid and

tradable. This allows us to use an American option pricing framework to derive a so-called

optimal initiation region. Our main practical finding is that given current design parameters

in which volatility (asset allocation) is restricted to less than 20%, while guaranteed payout

rates (GPR) as well as bonus (roll-up) rates are less than 5%, GLWBs that are in-the-money

should be turned on by the late 50s and certainly the early 60s. The exception to the rule

is when a non-constant GPR is about to increase (soon) to a higher age band, in which case

the optimal policy is to wait until the new GPR is hit and then initiate immediately. Also, to

offer a different perspective, we invert the model and solve for the bonus (roll-up) rate that

is required to justify delaying initiation at any age. We find that the required bonus is quite

high and more than what is currently promised by existing products. Our methodology and

results should be of interest to researchers as well as to the individuals that collectively have

over $1 USD trillion in aggregate invested in these products. We conclude by suggesting that

much of the non-initiation at older age is irrational (which obviously benefits the insurance

industry.)



1 Introduction

From the point of view of an insurance company issuing or selling a Variable Annuity with a

Guaranteed Lifetime Withdrawal Benefit (from here: GLWB), natural questions are the pric-

ing, hedging, and risk management of this product. From the point of view of the purchaser,

a different set of questions are important – optimal product allocation to GLWB’s, opti-

mal asset allocation within GLWB’s, optimal management of multiple GLWB accounts (eg.

where and when should new deposits be made), and optimal initiation of withdrawals. These

are all mostly open and ongoing research issues, and the latter is the question considered

here.

A GLWB purchaser decides when to initiate withdrawals. Typically, the vendor rewards

the purchaser for delaying initiation by providing a bonus (a.k.a. roll-up) to the guarantee

base of the product. The guarantee base may also rise because of resets, which are more likely

if initiation is delayed. Once initiated, payments are made at a rate which is a percentage of

the guarantee base. This percentage may vary depending on the age at initiation. Insurance

fees for the GLWB are charged on the guarantee base, regardless of whether withdrawals

have been initiated. At the time of initiation the bonus (roll-up) ceases but the guaranteed

withdrawals do not trigger surrender charges. We do not model withdrawals that exceed the

guaranteed amount, since in that case we would anticipate lapsation of the entire GLWB.

That would be a reasonable alternative if we were studying whether or not the GLWB is

itself a suitable investment. Instead we have in mind a situation in which a firm decision has

been made to retain the GLWB (perhaps due to adverse tax implications) and the question

of interest is purely one of initiating versus delaying withdrawals. We anticipate that this

is a scenario faced by many individuls who purchased variable annuities with GLWBs in

the last few years; currently ‘under-water’ (ie. the account value is under the guaranteed

withdrawal base.) In the industry’s language, should the investor stop the accumulation

process and begin withdrawals? Or, should they continue accumulating? We note that the

typical buyer of a GLWB (in the U.S.) is in his or her mid 50s, or early 60s, and that there

are no additional tax penalties imposed on withdrawals after the age of 60.

One way of posing the question of the optimal initiation time is to ask what scenario the

issuer must plan for in order to be fully hedged. In other words, what is the most costly

scenario from the point of view of the issuer? Naturally this is also the optimal initiation

time, from the point of view of a hedge fund that has purchased multiple VA contracts

from the original clients (enough to be diversified from the point of view of mortality risk).

We call this the risk-neutral initiation problem. A nice feature of this formulation is that

there is a unique and easily understood answer to the question, based purely on a complete-

market economic analysis. Auxiliary assets (eg. holdings in a non-guaranteed account) are

irrelevant. We present this analysis in this paper.

A different point of view is what we might call the utility maximizing initiation problem,

namely that of a purchaser who genuinely wishes to hold the longevity protection offered by a

VA. There are a variety of possible motivations for purchasing the VA, and optimal behavior

may in principal differ depending on the actual goal of the purchase. Put another way,
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purchasers may have a diversity of utility functions, that typically blend some combination

of lifetime consumption and preservation of capital or bequest. This approach might lead

to results that are quite different from a No Arbitrage analaysis. Nevertheless, preliminary

results (not presented here) are entirely consistent with the conclusion from the risk-neutral

version of the problem: Given current product features, typically it is optimal to initiate

immediately, exceptions being for particularly young individuals, individuals within a short

time of a rise in withdrawal rates, or individuals holding products with extreme return

characteristics (eg very high volatility or bonus rates).

The remainder of this paper is organized as follows. In Section #2 we briefly describe

the existing literature on variable annuity (VA) guarantees to help position our contribution

within the literature. Then, in Section #3 we describe the risk-neutral model in which

we operate. Section #4 provides the numerical examples and illustrations and Section #5

concludes the paper. All figures and tables that are referenced appear after the bibliography.

2 Position within the Literature

Scholarly research into the area of variable annuities (VAs), and specifically guaranteed min-

imum benefits (GMXBs) options – has experienced much growth in the last decade or so,

and a sizeable portion of this work has been published in the IME. One of earliest papers

analyzing options inside VAs and their Canadian counter-part called Segregated Mutual

Funds, was Windcliff, Forsyth and Vetzal (2001). They analyzed the shout option while

Milevsky and Posner (2001) examined the titanic option. To our knowledge, the first for-

mal analysis of the guaranteed minimum withdrawal benefit (GMWB) was Milevsky and

Salisbury (2006), which focused on the cost of hedging a promise to provide a fixed-term

annuity. The main conclusion of Milevsky and Salisbury (2006) was that GLWBs appeared

to be underpriced, relative to what was being charged for them in the (US) market. This

result was echoed by Coleman, Li and Patron (2006) as well as Chen, Vetzal and Forsyth

(2008), who also obtained option values. Although they employed a different PDE-based

methodology to derive hedging costs under a variety of parameter values, they arrived at

similarly high costs. The work of Dai, Kwok and Zong (2008) further re-enforced that fact

that U.S. insurance companies were not charging enough for guaranteed living benefit riders

on Variable Annuities. In fact, some might argue that this result was foreshadowed by Boyle

and Hardy (2003), who examined the valuation of (UK-based) guaranteed annuity options

(GOA), which are somewhat different from GLWBs or GMWBs, but arrived at similar con-

clusions. The insurance industry was under-pricing, under-reserving and mis-hedging these

complex options.

During and after the global financial crises of 2007 and 2008, most insurance companies

in the U.S. and Canada finally realized this and pulled-back on their (aggressive) offerings.

It is very difficult to find VAs with benefits and features such as the ones described in the

above-cited research papers. But, those investors fortunate enough to have purchased these

product prior to their withdrawal from the market must now decide how to optimize their

own withdrawals from the product.
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As far as more recent post crises research is concerned, the earlier pricing and valuation

results have been extended to include more complex models for asset returns, mortality risk as

well as policyholder behavior. Of course, none of these papers have invalidated the result that

these options are quite complicated and rather valuable to the consumer. If anything, they

prove that the options are even more complicated than previously thought. For example, Ng

and Li (2011) use a multivariate valuation framework and so-called regime switching Esscher

transforms to value VA guarantees. Feng and Volkmer (2012) propose alternative analytical

methods to calculate risk measures, which obviously reduce computational time and is prized

by practitioners. In a sweeping paper, Bacinello, Millossovich Olivieri and Pitacco (2012)

offer a unifying valuation framework for all guaranteed living and death benefits within

variable annuities. The above papers and other extensions by the same authors in different

venues all focus on the financial market uncertainty vis a vis the optionality, more so than

mortality and longevity uncertainty. The paper by Ngai and Sherris (2011), for example,

focuses on longevity risk and the effectiveness of hedging using longevity bonds, but doesn’t

discuss the optionality and timing problem within variable annuities.

In conclusion, most of the above articles are concerned primarily with risk management

from the issuers point of view, and aren’t concerned with the normative or prescriptive

implications for individuals who seek to maximize the embedded option value. An exception

to this is the recent paper by Gao and Ulm (2012) who offer suggestions on the optimal

asset allocation within a VA with a guaranteed death benefit. Their conclusion is that the

‘Merton Ratio’ asset allocation percentage doesnt necessarily hold within a VA, because of

the guaranteed death benefit. Our paper is in the same individual-focused vein, which we

believe is a very important, but often a neglected aspect of the research on risk management

and valuation.

In this paper we focus exclusively on the problem from the perspective of the individual

(retiree) who seeks guidance on when to initiate or begin withdrawals from the guaranteed

living withdrawal benefit (GLWB). In particular we are interested in the optimal timing

of annuitization, similar in spirit to the work by Milevsky and Young (2008) or Stabile

(2006), which solves an optimal timing problem by formulating and solving the relevant

HJB equation. This isn’t quite annuitization in the irreversible sense, given the liquidity of

the account. But the idea is the same.

As discussed in the introduction, by adopting a No Arbitrage perspective we are assuming

the individual is trying to maximize the cost of the guarantee to the insurance company

offering the GLWB. The optimal policy is the one that is the most costly to the issuer.

Preliminary results (not reported) support the conclusion that this is optimal even under a

utility-based analysis. Something which is properly left for further research. In either case,

the practical consequences (for the individual) are that given the age (above late 50s) of

typical investors holding substantial GLWB’s, current (low 3%) interest rates, existing (low

5%) bonus rates, forced (low 15%) volatility allocation, low guaranteed payout rates (4% to

5%), it is optimal to initiate the income immediately. The next section describes the set-up.
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3 The risk-neutral initiation problem

We start by giving the optimal initiation time, in the sense that it is the most costly for

the insurer, or the most rewarding for a (diversified) hedge-fund investor who has bought

the VA contracts. We will ignore lapsation, will assume that all contracts purchased have

identical returns and initial deposits of M0 = 1, that all are sold to clients of the same age

and health, that they initiate at the same time, and will take the number of contracts so

large that mortality is completely diversified. And, while stochastic mortality (as well as

stochastic interest rates and stochastic volatility) are all fertile areas of research, we start

with a simple model to gain clear intuition about the parameters and factors that drive the

initiation decision.

Our models are developed in a continuous-time (stochastic calculus) framework in which

step-ups, roll-ups, interest rates and investment returns accrue continuously. This is obvi-

ously done for analytic convenience (and academic tradition). However, in a later section

we conduct and report on Monte Carlo (MC) simulations that assume annual accruals and

compare results to the PDE-based approach, in Table #1. We find that numerical results

and specifically the initiation regions, as well as the required bonus rates to justify the delay

of initiation, are quite similar.

3.1 Notation and dynamics

We define the following quantities:

Xt = VA account value Mt = guarantee base (M0 = 1)

Yt =
Xt

Mt

= moneyness Lt = Local time of Yt at the level y = 1

Nt = Proportion of initial clients still alive Vt = Total value of the hedge

C = Total initial assets deposited λt = mortality hazard rate

τ = initiation time R = Ruin time (so XR = 0)

r = risk-free growth rate β = bonus rate

gτ = payout rate for initiation at time τ α = insurance fee as percent of Mt

σ = VA account volatility

We use risk-neutral GBM dynamics, with continuous stepups, bonuses, and fees. So prior

to ruin we have

dXt = rXt dt+ σXt dBt −Mt(gτ1{τ<t} + α) dt

dMt = Mt dLt + βMt1{t<τ} dt

which implies that prior to ruin (t < R),

dYt =
dXt

Mt

− Xt dMt

M2
t

= (r − β1{t<τ})Yt dt+ σYt dBt − (gτ1{τ<t} + α) dt− dLt.
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This is a Skorokhod-type equation, in which the dLt term keeps Yt ≤ 1, ie Xt ≤Mt. Ruin is

unlikely prior to initiation, but is theoretically possible because of the fee structure. Once the

account ruins, clients are obliged to initiate withdrawals (and there certainly is no incentive

to delay any further.) Now, because mortality is diversified,

dNt = −λtNt dt.

We ignore non-hedging fees, so fees collected stay in the hedge, and cash flows derive from

withdrawals and refunding account balances (albeit with no GMDB) at death. Other than

those cash-flows, the hedging portfolio is self-financing, therefore

dVt = rVt dt− CNtMtgτ1{τ<t} dt+ CMtYt dNt + dMart, (1)

where Mart is a martingale.

3.2 Hedging

Our goal is to choose τ to maximize the V0 required to ensure that Vt ≥ 0 for all t. By

scaling, and the fact that the Yt dynamics do not depend on Mt, we may write

Vt = CMtNtv(t, τ, Yt), (2)

where v denotes the hedge value required per dollar of remaining guarantee. There are, of

course, several versions of this, depending on whether ruin or initiation has occurred. In the

following, we make our variables correspond to Yt = y and, if initiation has already occurred,

also τ = s ≤ t.

v0(t, y) : value function before initiation or ruin,

v1(t, s, y) : value function after initiation but before ruin,

v2(t, s) : value function after initiation and ruin.

3.3 The post-ruin case v2

At ruin time clients initiate whether they have done so before or not. Therefore we are

dealing with an annuity, though the payout rate depends on the age of the client at the time

of initiation. In other words,

v2(t, s) = gs

∫ ∞
t

e−
∫ q
t (r+λp) dp dq = gsāt

where āt is the price of an annuity paying $1 for life, starting at time t. v2 will appear as a

boundary condition below.

Alternatively, we can state this in differential form, to make clear the relation with v1

and v0. Since Mt no longer changes, we may apply Ito’s lemma to (2) and match terms in

(1), or simply differentiate v2 with respect to t. This leaves us with the ODE

v2t − (r + λt)v
2 = −gs, (3)

with boundary condition v2(∞, s) = 0 because we assume the hazard rate increases without

bound. The martingale term vanishes.
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3.4 The post-initiation, pre-ruin case v1

Apply Ito’s lemma to (2) and match terms in (1), we get

CMtNt

[
v1t dt+ v1y(rYt dt+ σYt dBt − (gτ + α) dt− dLt) +

1

2
σ2Y 2

t v
1
yy dt+ v1 dLt − λtv1 dt

]
= CMtNt

[
rv1 dt− gτ dt− λtYt dt

]
+ dMart.

For s fixed, this yields the following PDE in the two variables t > s and 0 < y < 1:

v1t +
[
ry − (gs + α)

]
v1y +

1

2
σ2y2v1yy − (r + λt)v

1 = −gs − λty. (4)

The boundary conditions are v1(t, s, 1) = v1y(t, s, 1) (from the dLt terms), that v1(t, s, 0) =

v2(t, s), and v1(∞, s, y) = y (since the remaining cohort dies immediately).

3.5 The pre-initiation case v0

In the continuation region, the same analysis as above gives that

CMtNt

[
v0t dt+v0y((r−β)Yt dt+σYt dBt−α dt−dLt)+

1

2
σ2Y 2

t v
0
yy dt+v0 dLt+(β−λt)v0 dt

]
= CMtNt

[
rv0 dt− λtYt dt

]
+ dMart.

This yields the following PDE in the two variables t > 0 and 0 < y < 1:

v0t +
[
(r − β)y − α

]
v0y +

1

2
σ2y2v0yy − (r + λt − β)v0 = −λty. (5)

The boundary conditions are v0(t, 1) = v0y(t, 1) (from the dLt terms), v0(∞, y) = y (since the

remaining cohort dies immediately), and on the free boundary we have v0(t, y) = v1(t, t, y)

and v0y(t, y) = v1y(t, t, y) (smooth pasting). Because initiation is forced upon ruin, this in

principle could include the condition v0(t, 0) = v2(t, t) = gtāt.

3.6 Solution

It would naturally be of interest to evaluate the actual initial hedging cost v0(0, 1), and to

determine if it is > 1 or < 1. In case v0(0, 1) > 1, the issuer is not able to fully hedge. We

do not focus on this, however, since the question of interest to us is the initiation time (ie

the shape of the initiation boundary), not the hedgeability of the product itself. In other

words, we do not opine on whether α is large enough to cover the hedging cost.

We solve numerically, by discretizing s, t, and y. In full mathematical generality, gs could

vary continuously with s, in which case we would proceed as follows. Fix successive grid

points tk < tk+1. Assume that we have calculated v0(t, y) and v1(t, s, y) for all grid points

0 ≤ y ≤ 1 and t ≥ s ≥ tk+1. To obtain the new values v0(tk, y) we solve the entire PDE

(4) in (t, y) for s = tk, t > tk and 0 < y < 1. We then calculate a delay (continuation)
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value ṽ0(tk, y) from one step of the PDE (5), and set v0(tk, y) = max(ṽ0(tk, y), v1(tk, tk, y)).

Clearly the time-consuming portion of this calculation is the need to re-solve the PDE (4)

at every step.

In practice, this issue does not arise, as real payout schedules gs do not step up continu-

ously. Typically they step up at a small number (3-4) of specified age bands sk. This greatly

simplifies the computation, as we may carry out a version of the above procedure with just

these values sk for s, and then varying only ti and yj on a finer grid.

Note that numerical computation of the PDE solution v0 is not the only possible approach

to this problem. Recall that N0 = M0 = 1. So by (1), we may write v0(0, y) as the risk

neutral expectation of discounted cash flows from the hedge:

v0(0, y) = sup
τ
EQ

[ ∫ R

0

e−rtMtYt d(−Nt) +

∫ ∞
τ

NtMtgτ dt | Y0 = y
]
.

As alluded to earlier, Monte Carlo (MC) methods could in principal be used to calculate v0,

except that the optimization over τ is hard to implement using simulation. However, the

approach does give us a simple way of comparing our results with specific initiation strategies

τ , to see how close they are to being optimal. Each such strategy naturally provides a lower

bound for v0. We can easily gauge other effects using MC, for example, the impact of using

annual stepups, bonuses, or fees, instead of the continuous versions implemented in the

PDE approach. We will make such comparisons in the following section, where we compare

two strategies: initiate now, versus initiate in 5 years. We will compute the “break-even”

bonus rate, ie the β at which one is indifferent between the two strategies. We do so using

the MC approach (stepup/bonus/fee adjustments made once per year), and compare the

results obtained using the PDE approach (continuous stepups/bonuses/fees) that gives the

corresponding bonus rate based on the optimal strategy with a five-year waiting period.

4 Results and discussion

When the guaranteed payout rate (GPR) g is constant and independent of age, there is

typically a single contiguous initiation region, as shown in Figure 1, for example. There

the parameter values are chosen to be r = 3%, β = 4%, Gompertz mortality parameters

m = 87.25, b = 9.5, 50 ≤ age ≤ 120, σ = 20%, α = 1.5%, and g = 5%. The high upper-age

horizon of 120 is chosen as the maximum for life. The red-colour area denotes the region in

which the accumulation should be terminated and the GLWB should be initiated. The green-

coloured region denotes the age and money-ness in which accumulation should continue and

withdrawals should not be initiated. Recall that it is only during the accumulation period

that a bonus (roll-up) will be credited to the guaranteed base.

Figure #1 to #5 Here

The effects of varying σ (asset allocation restrictions) and β (bonus and roll-up rates)

are shown in Figures 2-5. Roughly speaking we find that the delay region expands as σ or β
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increases. Given that these products are intended as retirement savings vehicles, and that one

will typically no longer contribute to a GLWB once withdrawals are initiated, the initiation

question is typically asked by individuals in their late 50s and up. Even at a relatively high

(for this type of investment) volatility of σ = 20%, as in Figure 1, such individuals should

delay only if the money-ness of the account approaches 1. At a more typical (and lower)

volatility level of σ = 10%, as in Figure 4, there is no money-ness level at which delay is

optimal for someone age 60. Situations at which delay is optimal for individuals at realistic

ages require us to impose quite extreme parameter values, such as σ = 30% (Figure 5) or

a bonus rate of β = 6% (Figure 2) or β = 8% (Figure 3). All Figures 2-5 assume the

withdrawal rate g is constant, regardless of whether the income is initiated at age 55 or age

85, for example.

Regardless of the exact parameter values, there are a number of qualitative insights that

are immediately obvious after glancing at these figures. First, at older ages and lower values

of money-ness (y) it optimal to stop accumulation and initiate the GLWB. This is the red

region. The much smaller green region, which indicates that it is optimal to wait (and not

initiate) only occurs in areas where the money-ness is very high and the age is quite young.

Table #1 Here

Viewing the problem from a different angle, we can invert the model and compute the

β values needed for an individual to be indifferent between initiating immediately, versus

initiating in five years for example, for several different ages and y values. These values are

reported in Table #1. Notice how the threshold values are relatively higher than the (cur-

rently offered) 5% or 4% bonus for waiting. This is yet another indication of the optimality

of initiation.

Figure #6 Here

With a more realistic step function for gt which is dependent on age as in Figure 6

(bottom) and using the same other parameter values as in Figure 1, we see optimal initiation

well below age 50, when the account is close to ruin. But, the boundary between the initiation

and non-initiation regions becomes more complicated.

Although Figure 6 is based on a very specific payout rate function (g), the fragmented

and non-contiguous region depicted is typical of most GLWBs and gets to the economic

essence of the decision to initiate. Namely, there is a small sliver of age during which it

is worth waiting to reach the next age band, and thus gain the higher lifetime income by

immediately turning the GLWB on. The region in which the optimal policy changes from

accumulate (green) to stop and turn-on (red) is driven entirely by the ages at which the

guaranteed payout rate gt jumps to the next band. The thickness of the region depends

on the money-ness of the account as well as the exogenous parameters such as the bonus

(roll-up) rate, the interest rate and the volatility of the subaccounts.

Finally, Table #2 provides a summary of the comparative statics on the optimality of

delay. The following parameter changes are all associated with greater propensity to initiate:
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(i.) higher ages and poor health, (ii) a bonus (roll-up) rate that is smaller, (iii.) a lifetime

payout rate that is lower, (iv.) a volatility that is lower, or equivalently, an asset allocation

within the variable annuity that contains less equity exposure, (v.) a risk-free valuation rate

that is higher, (vi.) an insurance fee that is higher. Finally (vii.) the response to money-

ness is more complicated. While it typically appears that lower values of money-ness are

associated with initiation, there are some cases in which this is not the case. One should

therefore be careful about concluding that all variable annuities that are (deeply) underwater

should be initiated. It really depends on the bonus rate that is being offered to wait, as well

as the lifetime payout rate itself.

Table #2 Here

4.1 Modeling Caveats

There are a number of (subtle) modeling assumptions that we have made or have assumed

in our analysis that are important to emphasize again, before these results are applied in

practice.

First, we have essentially ignored the guaranteed minimum death benefit (GMDB) that

is attached to most variable annuities (VA). Technically we assumed that at death the bene-

ficiary receives the account value, only. Historically, most VAs offered a range of (lucrative)

GMDB options in which the maximum account value could be protected at death, possibly

with a guaranteed bonus (or roll-up) as well. These options (obviously) cost more and, more

importantly, initiating withdrawals might reduce the GMDB in a disproportionate and un-

desirable manner. That said, one might question why a rational investor would select (and

pay for) both the enhanced GLWB and the GMDB, since they protect against two opposing

risks. Either way, our results are immediately applicable to individuals who have only elected

the GLWB, which is a non-trivial portion of the variable annuity market.

Second, we have assumed that once withdrawals are initiated there are no further step-

ups into higher income bands, in the lifetime payout amounts. For example, if the (deep

in the money) GLWB was initiated at age 60, at a guaranteed base value of $100,000 and

a guaranteed payout rate (g) of 5%, then the 5% is paid for life even if g at age 70 is 6%

In practice, some GLWBs offer a further reset of the income amount into higher guaranteed

payout rates as the account value reaches a new high-water mark after initiation. And, while

the (risk-neutral) probability of this event occurring is quite small this is something we have

not accounted for in the model. Nevertheless, we are confident that further resets even after

initiation would only increase the initiation (red) region, all else being equal.

Third, while we have been careful to model the insurance fees as a percent of the guar-

anteed base (Mt) – and not the account (Xt) value, which is a common oversight in the

literature – there is a baseline level of money management and insurance fees that is im-

posed on the account value (Xt), which we have (also) abstracted from. That said, this also

creates an incentive to initiate earlier and help rush the account towards ruin.

Fourth, it is estimated that approximately half of GLWBs are sold with a joint-life rider

in which the guaranteed payout rate (g) is reduced by 50 to 100 basis points in exchange
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for a life annuity that continues until the second death. Alternatively, some GLWBs charge

higher fees for the same joint guaranteed payout rate. It is unclear how this affects the

initiation decision, especially when there is a large age gap within the couple. Although,

once again our comparative static analysis seems to indicate that reduced values of g and/or

increased fees α have the same effect. Namely, initiate.

In sum, given the increasing restrictions of sub-account volatility, where 100% stock

allocations are unheard of (so that sigma < 15%) and bonus rates and guaranteed payout

rates are under 5%, it is very difficult to justify paying for a GLWB rider and at the same

time continuing the accumulation stage beyond the age of 60.

5 Summary and Conclusion

Variable Annuities (VA), also known as Segregated Mutual Funds in Canada – contain a

variety of living and death benefit (a.k.a. secondary) guarantees, which have attracted

much attention within the insurance, economics and actuarial scholarly literature. Recently

published articles have applied a No Arbitrage approach to the valuation of Guaranteed

Minimum Death Benefits (GMDBs) and Guaranteed Lifetime Withdrawal Benefit (GLWB)

policies; thus offering both a hedging and risk management perspective. This continues to

be a fertile area of research and the results have attracted much attention from scholars,

practitioners and the media. 1 In this paper we continue this line of research by examining

a No Arbitrage approach to optimal behaviour.

One of the by-now established and stylized facts in this literature is that most (if not all)

of the widely available GLWB products sold in the U.S. during the early part of the 21st

century were severely underpriced. Insurance companies and manufacturers were not hedging

properly and/or they were using actuarial (as opposed to financial) techniques for pricing.

Indeed, the popularity – as well as the liability created by these products – is responsible for

the financial difficulties experienced by numerous insurance companies during the 2008/2009

crisis. A number of large insurance carriers have recently exited this business, and the trend

is expected to continue. In the current market environment, it is virtually impossible to

locate VA + GLWB that provides the same level of value that was available just five years

ago. In that sense, issuers and carriers have learned their lessons the hard way.

However, what has attracted less scholarly research attention but is equally important is

the following question. How exactly should consumers who currently have (grandfathered)

policies with these guarantees, optimize the value of their embedded option? In the U.S.

market alone there are over $1 trillion worth of these VA policies held by individuals. This

tactical question is currently on the mind of many financial advisors with a large number of

clients holding these products, in which the aggregate value of the embedded optionality is

1In addition the papers listed in the literature review, see the recent work by Chen and Forsyth (2008),

Donnelly, Jaimungal and Rubisov (2012), Huang and Forsyth (2011), Huang, Forsyth and G. Labahn (2012),

Kling, Ruez and Russ (2011), Kolkiewicz and Liu (2012), Lin, Tan and Yang (2009), Marshall, Hardy and

Saunders (2010), Marshall, Hardy and Saunders (2012), Piscopo and Haberman (2011) as well as Shah and

Bertsimas (2008).
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quite substantial.

From a financial economics perspective, this question is complicated by the fact that

the optimal policy for a consumer seeking to maximize (and smooth) lifetime utility of

consumption is not necessarily a policy that induces the maximum liability to the issuer. In

other words, the hedging strategy (for the manufacturer) may not be the symmetric opposite

of the dynamic utilization strategy (for the buyer).

Our results also indicate that it rarely makes sense to contribute additional funds to

an existing VA + GLWB policy that is in-the-money. By contributing funds to an under-

water policy the policyholder is watering-down the value of the guarantee. Quite perversely,

consumers are unnecessarily doing the hedging for the insurance company. Much more

importantly and quite relevant, we find that it is optimal to initiate the policy and begin

withdrawals as soon as possible, with a few exceptions. When the payout rate is about to

increase (very soon), the optimal policy may be to wait until the new payout rate kicks-in,

and then initiate immediately. Likewise, if the investor is unusually young, and able to

benefit from a long lifetime of withdrawals at an elevated rate, it may be optimal to delay in

order to accrue bonuses or stepups. Investors lucky enough to hold a GLWB with unusually

generous terms (a very high bonus rate, or the ability to allocate significant funds to high-

volatility assets) may find it optimal to delay. But for most investors, there is little reason

to delay.

Even if an investor is still employed and/or is not interested in consuming the income from

the GLWB, they are still better-off withdrawing the funds and re-investing in an equivalent

(lower cost) mutual fund or tax-sheltered variable annuity. (This can be done via a partial

1035 exchange, in the language of the U.S. tax code.) And, if this ends-up ruining the

account, so be it. They will have traded a GLWB for a non-guaranteed account plus a fixed

life annuity.

Here is some intuition. The GLWB is worth something, only because of the probability

the investment account will be (i) depleted by withdrawals at some date, and (ii.) the

individual annuitant will live well beyond that date. The insurance is paid-for by ongoing

charges to the account, which come to an abrupt end if-and-when the account hits zero.

Thus, the sooner that account can be “ruined” and these insurance fees can be stopped,

the worse it is for the insurance company and the better it is for the annuitant. Even the

allure of a higher guaranteed base – if you wait longer – can’t really offset the power that

comes from depleting the account as soon as possible. As soon as the account is ruined, the

annuitant and beneficiary are living off the insurance company’s dime. And, while it might

seem odd that trying to increase the hedging cost to the insurance company is in the best

interest of the policyholder, our utility-based analysis indicates a similar phenomenon.

We caution that our research is ongoing, and these results are dependent on modeling

assumptions in which market volatility and long-term interest rates remain at their current

level. If, for example, the VIX index jumps to elevated levels for an extended period of time

and remains elevated, and/or long-term bond yields return to their historical levels, some of

these high-level results may no longer be valid.
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Figure 1: (Moderate σ) Model assumptions: r = 3% (=interest rate), β = 4%

(=bonus rate), m = 87.25 (=Gompertz modal value), b = 9.5 (=Gompertz disper-

sion value), 50 ≤ age ≤ 120, σ = 20% (=account volatility), α = 1.5% (=GLWB

insurance fees), and g = 5% (=guaranteed payout rate). The red region denotes

the combination of money-ness and age in which accumulation phase should be

terminated and the GLWB should be initiated. The green region is where the

option to wait is valuable.
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Figure 2: (High β) Model assumpions: r = 3%, β = 6%, m = 87.25, b = 9.5,

50 ≤ age ≤ 120, σ = 20%, α = 1.5%, and g = 5%.
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Figure 3: (Higher β) Model assumptions: r = 3%, β = 8%, m = 87.25, b = 9.5,

50 ≤ age ≤ 120, σ = 20%, α = 1.5%, and g = 5%.
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Figure 4: (Lower σ) Model assumptions: r = 3%, β = 4%, m = 87.25, b = 9.5,

50 ≤ age ≤ 120, σ = 10%, α = 1.5%, and g = 5%.
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Figure 5: (Higher σ) Model assumptions: r = 3%, β = 4%, m = 87.25, b = 9.5,

50 ≤ age ≤ 120, σ = 30%, α = 1.5%, and g = 5%.
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Figure 6: (Stepped Payouts) Top part diplays the initiation (red) and non-

initiation (green) regions. The bottom part displays the guaranteed payout rate gt
as a function of initiation age. The model assumptions are that r = 3%, β = 4%,

m = 87.25, b = 9.5, 50 ≤ age ≤ 120, σ = 20%, α = 1.5%.
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Table 1: Notes: The PDE assumes a continuous (step-up, interest, return) model

versus MC which assumes yearly adjustments. The initiation is after a five year

delay regardless of the moneyness value. Note that the higher the current age,

the greater the break-even bonus must be to justify not initiating. Also, if the

volatility of the sub-accounts is lower than the σ = 20% assumed, or the insurance

fee is greater than the α = 1.5% asssumed or the guaranteed payout rate is less

than the g = 5% assumed, the resulting break-even β values would be higher than

reported. These results should also provide an indication of the error introduced

by using continuous versus annual compounding.

Bonus Rate That Will Induce Waiting

PDE: bonuses/fees/stepups accrue continuously

MC: bonuses/fees/stepups accrue yearly

Current Age Moneyness PDE bonus MC bonus

Age 55 y = 1.0 β = 3.62% β = 3.97%

Age 55 y = 0.8 β = 4.15% β = 4.53%

Age 55 y = 0.5 β = 5.30% β = 5.29%

Age 65 y = 1.0 β = 5.78% β = 5.99%

Age 65 y = 0.8 β = 5.98% β = 6.13%

Age 65 y = 0.5 β = 6.74% β = 6.69%

Age 75 y = 1.0 β = 9.19% β = 9.36%

Age 75 y = 0.8 β = 8.92% β = 8.84%

Age 75 y = 0.5 β = 9.25% β = 9.12%

Table 2: Notes: The table displays the directional change in underlying parameter

variables that would result in initiation of the GLWB assuming one is currently

on the razor’s edge between the two regions.

Comparative Statics for Variables that Affect GLWB Initiation

Age or Gender or Health (λt) ↑ Older = Initiate

Waiting Bonus = Roll-Up Rate (β) ↓ Smaller = Initiate

Lifetime Income Payout Rate (gt) ↓ Reduced = Initiate

Stock Allocation (σ) ↓ Restricted = Initiate

Risk-free Treasury Rate (r) ↑ Increase = Initiate

Insurance Fee as % of Base (α) ↑ More Expensive = Initiate

Account Value ÷ Guarantee (y) ↓ Underwater* = Indeterminate
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