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Abstract

Milevsky and Huang (2011) investigated the optimal retirement spending policy for a utility-maximizing
retiree facing a stochastic lifetime but assuming deterministic investment returns. They solved the problem
using techniques from the calculus of variations and derived analytic expressions for the optimal spending rate
and wealth depletion time under the Gompertz law of mortality. Of course, in the real world financial returns
are stochastic as well as lifetimes, raising the question of whether their qualitative insights and approximations
are generalizable or practical.

We solve the retirement income problem when investment returns are indeed stochastic using numerical
PDE methods, assuming the principles of stochastic control theory and dynamic programming. But then – and
this is key – we compare the proper optimal spending rates to the analytic approach presented in Milevsky
and Huang (2011) by updating the portfolio wealth inputs to current market values. Our main practical
conclusion is that this simplistic approximation when calibrated properly and frequently can indeed be used
as an accurate guide for rational retirement spending policy.

As a by-product of our PDE-based methodology, our results indicate that even though the wealth depletion
time is no longer a certainty under stochastic returns, the expected age at which liquid wealth is exhausted (i.)
takes place well before the maximum lifetime and (ii.) is also well approximated by our analytical solution.

1 Introduction and Motivation

With the continued global decline in Defined Benefit (DB) pension provision and the increased reliance on
Defined Contribution (DC) investment plans, researchers and practitioners continue to focus on the proper
tools and strategies needed to finance retirement income.

Indeed, the conventional wisdom and practice in the wealth management industry is that individuals
should manage their financial affairs – and in particular select a spending or drawdown rate1 – that reduces
the risk of running out of money during retirement. In other words, the goal or objective is to identify
and then stick to a so-called safe withdrawal rate that minimizes the risk of ruin. This laudable and rather
intuitive objective function has been at the core of hundreds of scholarly as well as practitioner papers written
during the last 25 years. They all implicitly or explicitly derive spending plans that seek to avoid (at all
costs) the chances of the financial portfolio hitting the value of zero during their life. After all, nobody wants
to “go broke” and starve to death. See the work by Bengen (1994); Milevsky and Robinson (2005); Pfau
and Kitces (2014) for examples of this paradigm at work. In particular, Bayraktar and Young (2007) show
that when utility is a power function and the consumption rate is proportional to wealth, the individual who
minimizes lifetime ruin probability behaves like an individual who maximizes the expected discounted utility
of consumption.

As a by-product and result of our (more) robust optimization model, we are able to strengthen the claim
that within the context of a rational lifecycle model it might be optimal to spend-down financial investment
accounts to zero. In other words, from a lifecycle perspective, ruin is not a scenario or outcome that should
be avoided at all costs. Rather, the rational objective should be to slowly and smoothly deplete financial
resources accounting for the declining probabilities of living to very old ages. And, if a by-product of this
behavior is that financial wealth is expected to hit zero at some distant point, so be it – provided there is
some pension income to fall back on. In other words, ruin should not be feared if annuities are part of the
retiree’s portfolio. We provide the stochastic model to justify this claim.

Now, we should note that we are not the first, nor the only authors to point this out. The earliest
theoretical hint that this might be the case was in a technical article by Leung (1994) who extended the
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1Spending Rate or Withdrawal Rate is defined as the amount of money withdrawn per $100 from investible wealth. When
pensions are present, we deduct the pensions from consumption, thus mathematically, spending rate (per $100) is ct − π, where
ct is consumption and π is pension.
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landmark paper by Yaari (1965). This fact was also mentioned (tangentially) in a more practitioner-oriented
paper: Milevsky and Huang (2011). However, these articles were structured in an economic environment with
deterministic investment returns and no background uncertainty other than mortality.

In sum, in addition to solving a particular stochastic optimization problem, this brief paper reinforces
three points that are relevant to retirees and their financial advisors: (1.) Based on our model for opti-
mal consumption, deterministic approximations to stochastic problems provide reasonably accurate rules of
thumb. (2.) Risk aversion and one’s personal attitude to lifetime uncertainty has a significant impact on the
optimal spending rate at retirement. (3.) When one has access to some sort of pension annuity income (i.e.
social security income, DB pension, or income annuities), running out of money during retirement shouldn’t
necessarily be feared or avoided. It might in fact be optimal.

1.1 Literature Review

The topic of sustainable withdrawal rates from a portfolio comprising cash, fixed income, and equity has
been investigated quite extensively. The literature on portfolio withdrawal rates can be divided into two
categories: one that uses a ruin probability minimization approach to determine a sustainable withdrawal
rate or a life-cycle approach based on a utility model that takes investor risk preferences into consideration.

Famous among the practitioners is Bengen (1994) that concluded, empirically by using historical returns
of the equity and fixed income markets, that an initial rate of 4% adjusted for inflation annually would sustain
the portfolio for 30 years. It has now become the de facto rule of thumb and is commonly referred to as the
Bengen 4% rule in the industry. Other studies on a sustainable withdrawal rate include Cooley et al. (1998),
often referred to as the Trinity Study. Many of these studies are based on empirical evidence and generally
lack the economic framework — a concern pointed out by Scott et al. (2008) which alluded to the need for a
life-cycle approach. Gerrard et al. (2006) take a risk management approach whereby they tackle the problem
using optimal control theory and determine how a member of a DC pension plan can make spending decisions
before mandatory annuitization of the remaining wealth at 75. Stout and Mitchell (2006) develop a dynamic
model of retirement withdrawal planning that allows planners to improve the probability of success while
simultaneously increasing the average withdrawal rate. Researchers have also used mortality and longevity
risk for portfolio choice and asset allocation such as Bodie et al. (2004); Dybvig and Liu (2005); Babbel and
Merrill (2007); Chen et al. (2006); Jimenez-Martin and Sanchez-Martin (2007); Milevsky and Huang (2011).

More recently, another leading practitioner Blanchett et al. (2012) studied the safe withdrawal rate and
provided a framework for choosing a withdrawal strategy, initial withdrawal rate, and asset allocation. While
Blanchett et al. (2012) use a utility model to compare the outcomes of various strategies, they do not prescribe
or recommend any one particular withdrawal strategy to be utilized over another. On a related note, Pye
(2012) also looks at the withdrawal rate and considers a different question: When to retrench as opposed
to determining the optimal withdrawal strategy alluding that it may be a futile objective given that many
retirees will not be able to sustain themselves in retirement given that they have not saved enough; so perhaps
individuals should withdraw an amount to sustain themselves and retrench when necessary.

To fill an apparent gap in the literature, in this paper we solve the full Merton (1971) model in which
investment returns as well as lifetimes are random, but one in which pension annuities are also available.
Moreover, we show that in such a world – with parameters properly calibrated to real world values – it is
optimal to exhaust ones financial resources before becoming a centenarian. Now, of course, this does not
imply that one starves to death. Rather, if indeed the retiree reaches that age they should plan to live off
their pension annuity income (if it is available). Stated bluntly, if there is only a 5% chance of reaching the
age of 100, it is quite rational to (i.) assume that you won’t and (ii.) reduce your consumption to the minimal
pension level, if you do. As a by-product to our main qualitative claim, this paper also offers an algorithm
for determining optimal drawdown or spending rates in the presence of stochastic returns, exogenous pension
income and longevity risk. We demonstrate that the resulting procedure is reasonably well-approximated by
a deterministic algorithm originally presented in Milevsky and Huang (2011) – so long as the calculations are
repeated on a frequent basis.

1.2 Agenda of the paper

The remainder of the paper is organized as follows. In Section 2 we summarize the findings in Milevsky
and Huang (2011). In Section 3 we discuss the setup of the mathematical problem, the resulting PDE and
related boundary conditions. In Section 4 we present several numerical examples followed by a conclusion
in Section 5. All tables and figures are placed in section 6 to ease the reading and layout. The solution
methodologies are provided in technical appendix A (Appendix A.1 reproduces the equations from Milevsky
and Huang (2011) using the model equations from this paper and the method of characteristics. Appendix A.2
shows the numerical scheme used to solve the PDE equations in this paper. Appendix A.3 is an approximation
based on asymptotic expansion and perturbation theory).

In sum, the two central questions we raise in this paper are: (1) What happens when lifetimes and
investment returns are both stochastic; and (2) Can the deterministic methodology developed in Milevsky
and Huang (2011) be made to work by some suitable modifcation?

For comparison purposes we present three distinct solutions. The first one is α = 0 case, i.e., 100% in
risk-free assets (labeled static). The second one is an approximation whereby wealth follows the stochastic
processes (for a fixed asset allocation to the risky and risk-free assets) while the optimal consumption rate
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is solved in a deterministic setting, computed using the portfolio return rate on a frequent basis (labeled
dynamic). The final solution is computed using the optimal control approach as described in this paper
(labeled stochastic).

2 Review of Spending when Returns are Deterministic

In 2011, the authors of Milevsky and Huang (2011) derived, analyzed and explained the optimal retirement
spending policy for a utility maximizing agent facing a stochastic lifetime. The authors deliberately ignored
market risk to focus on the role of longevity risk aversion in determining optimal consumption (or spending)
during a period of stochastic length.

While the 4% withdrawal rate is consistent with life-cycle consumption smoothing, it is so only under a
very limited set of implausible preference parameters. According to the authors, there is no fixed withdrawal
policy – the forward-looking spending rate is proportional to survival probabilities that is adjusted upwards
for pension income and downward for longevity risk aversion.

Computationally, the analytic problem maximizes the value function that is the actuarially discounted
utility of consumption:

max
c
V (c) =

∫ ∞
0

e−ρs spx u(cs) ds (1)

where x is the age of the retiree, ρ is the subjective discount rate, tpx = exp(−
∫ t

0
λx+qdq) is the survival

probability for an x-year old to age x + t, ct is consumption, and u is the CRRA utility function. tpx is
parameterized using Gompertz-Makeham law of mortality under which the biological hazard rate is λt =
λ0 + 1

b
e(t−m)/b. λ0 captures the death rate attributable to accidents, m is the modal value of life and b

denotes the dispersion coefficient. The utility function exhibits constant relative risk aversion (CRRA) that

is given by u(c) = c1−γ

(1−γ)
with γ being the parameter of risk aversion.

The wealth trajectory, denoted Wt – the dynamic constraint in the model linked to the objective function
– is expressed as:

dWt = [rWt − ct + π]dt (2)

where π is the (constant) pension income and ct is the consumption rate.
It can be shown by the Euler-Lagrange Theorem from Calculus of Variations that the optimal trajectory

for Wt, in the region over which it stays positive, follows a second order non-homogeneous differential equation:

Ẅt − (kt + r)Ẇt + rktWt = −πkt (3)

where kt = r−ρ−λt
γ

. The above equation is only valid until the Wealth Depletion Time (τ) since that is the
time when wealth reaches zero. The solution to the differential equation above is expressed as:

Wt =
(
W0 +

π

r

)
ert − atx(r − k,m∗, b)c∗0ert −

π

r
(4)

where W0 is the initial wealth, m∗ = m+b ln γ is the modified Gompertz-Makeham modal value in the annuity
factor. The actuarial present value function, denoted aTx (v,m, b) depends upon the survival probability curve
via the parameters (m and b) and the valuation rate v. It is defined and computed using the following:

aTx (v,m, b) =

∫ T

0

e−vs spx ds (5)

The optimal consumption rate is shown to satisfy the following equation:

c∗t = c∗0 e
kt

tpx
1/γ (6)

where k = (r−ρ)
γ

. The initial consumption c∗0 is obtained from equation (4) using the definition of WDT
(Wτ = 0):

c∗0 =
(W0 + π/r)erτ − π/r
aτx(r − k,m∗, b)erτ (7)

and WDT satifies the equation:

(W0 + π/r)erτ − π/r
aτx(r − k,m∗, b)erτ ekτ · τpx (1/γ) = π (8)

The main insights in a deterministic framework of Milevsky and Huang (2011) are as follows:

1. The initial spending rate critically depends upon a retiree’s risk aversion and pre-existing pensions.

2. The optimal consumption (i.e. sum of all pensions and withdrawals from the account) is a declining
function of age. Retirees should consume more today than what they consume in the future.
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3. Risk aversion and survival probabilities interact in a manner whereby the greater risk averse individual
behaves as if he/she will live longer and therefore spends less in retirement. However, the monotonic
behaviour of consumption only occurs when α = 0. See the results and discussion in section 4 when α
is non-zero.

4. Wealth trajectory declines with age and retirees with sufficient pensions spend down their wealth well
ahead of reaching an advanced age.

5. The rational reaction to portfolio shock is non-linear and depends upon pre-existing pensions.

6. Converting some of the initial investible wealth into a stream of lifetime income increases consumption
at all ages even when interest rates are low. For example, in the simplest case where an individual has
no pre-existing pensions, the initial consumption, obtained from equation(7), will be W0

aτx(r−k,m∗,b) . If

this client were to annuitize completely, then his annuity income would be W0
a∞x (r,m,b)

which is higher.

3 Problem Setup (Stochastic Returns)

Consider an account with wealth Wt satisfying the following dynamics:

dWt = [α(µ− r) + r]Wtdt+ ασWtdBt + πdt− ctdt (9)

where α is the fraction of wealth in the risky asset, π is the (constant) pension income and ct is the consumption
rate. The risky asset follows a GBM process with drift µ and volatility σ while the riskless return rate is r.
α is a fixed parameter between 0 and 1. We impose Wt ≥ 0. Observe, if α = 0, we revert back to equation
(2) and the solution as presented in section 2.

Next, we define a value function (in retirement with no bequest motive) as:

J(t, w) = max
cs

E

[∫ ∞
t

e−ρs spx u(cs)ds|Wt = w

]
, (10)

One clear departure from Merton (1971) is that in our setup the asset allocation is fixed over the entire
retirement time horizon. We let α = 0%, 20%, 60%, or 80% over the entire investment time horizon assuming
that, while in retirement, the investor will maintain the asset mix by trading and rebalancing continuously.
There is a utility loss from the inability to adjust asset allocation over time. See, for example, the work by
Browne et al. (2003).

3.1 Hamilton-Jacobi-Bellman Equation

The value function satisfies the Hamilton-Jacobi-Bellman (HJB) equation

Jt + max
ct

{
[α(µ− r) + r]wJw + (π − ct)Jw +

(ασw)2

2
Jww + exp

[
−
∫ t

0

(ρ+ λx+q)dq

]
u(ct)

}
= 0 (11)

for w ≥ 0. It is slightly more convenient to work with J = exp
[
−
∫ t

0
(ρ+ λx+q)dq

]
V , where V satisfies

Vt + max
ct

{
[α(µ− r) + r]wVw + (π − ct)Vw +

(ασw)2

2
Vww + u(ct)

}
= (ρ+ λx+t)V. (12)

3.2 Boundary Conditions

To solve the HJB numerically, we must find out what happens at w = 0. Assuming Vw and Vww are
bounded, then as the limit w → 0 we drop wVw and w2Vww terms to obtain:

Vt + (π − c∗t )Vw + u(c∗t ) = (ρ+ λx+t)V. (13)

where, c∗t is the optimal consumption. If π = 0, we have the same setup as Merton (1971). If If c∗t ≤ π, we
do not need a boundary condition at w = 0. This is due to the fact that the slope of the characteristics is
positive (as we are solving the HJB backwards in time), i.e.,

dw

dt
= π − c∗t ≥ 0. (14)

On the other hand, if the value given by the first-order condition satisfies c∗t > π, we set c∗t = π (as there are
no assets to deplete). The HJB on the boundary w = 0 is now an ODE

Vt + u(c∗t ) = (ρ+ λx+t)V, (15)

which can be integrated in time (backwards).
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3.3 Wealth Depletion Age

When the return is deterministic it is well known, in the Yaari (1965) model with pensions, that there
exists a wealth depletion age. This was first discovered or pointed out by Leung (1994). When the return is
stochastic there is no longer a fixed wealth depletion age. One indicator is the time t when c∗t computed by
the first-order condition first exceeds π on the boundary w = 0. We define Td(t, w) to be the expected wealth
depletion time, conditioned on Wt = w. It is given by solving the following partial differential equation

∂Td
∂t

+ c1
∂Td
∂w

+
c22
2

∂2Td
∂w2

+ 1 = 0 (16)

where
c1 = (α(µ− r) + r))w + π − c∗t , c2 = ασw.

The boundary condition is needed at w = 0 when only c∗t ≥ π, which is Td(t, 0) = 0. The expected wealth
depletion age, can be easily computed by adding the starting age to Td.

4 Numerical Examples

In this section we provide a variety of numerical examples under different parameter values and conditions
to “prove” our assertion that the deterministic approximation provides satisfactory results relative to the
“true” optimal control policy.

4.1 Parameters

To generate our results we need capital market assumptions (r, µ, σ), mortality assumptions (λ0,m, b),
and a measure of risk aversion (γ). Our capital market assumptions are based on the 2016 Long-Term Capital
Market Assumptions from J.P. Morgan Asset Management. Specifically, we use the returns assumption of
US Large Cap as a proxy for risky assets, i.e. µ = 8% and σ = 14%, and US Short Duration Government
Treasury as a proxy for risk-free return, i.e. r = 3.75%. We fit the parameters of the Gompertz-Makeham
model (namely λ0,m, b) to the RP2014 table from the Society of Actuaries with projection scale table MP2014
applied for 2015. For males, the Gompertz-Makeham parameters are λ0 = 0.003069, m = 89.1, b = 8.6, and
for female, the mortality parameters are λ0 = 0.001978, m = 91.2, and b = 8.5. We assume that the subjective
discount rate ρ equals to the risk-free rate r.

A variety of studies have estimated the value of γ. One of the earliest papers is the work by Friend and
Blume (1975), which has withstood the test of time and provides an empirical justification for constant relative
risk aversion, estimates the value of γ to be between 1 and 2. Feldstein and Ranguelova (2001); Mitchel et al.
(1999) in the economics literature have employed values of less than 3. Mankiw and Zeldas (1991); Blake and
Burrows (2001); Campbell and Viceira (2002) suggest that risk aversion levels might be higher. On the other
hand, to avoid the problem of picking a γ value, Browne et al. (2003) invert the Merton optimum to solve
for γ. However, any formulaic approach requires that we have the client’s complete financial balance sheet
inclusive of financial and real assets. Therefore, in the absence of a complete balance sheet, we present our
results for several values of γ ranging from 0.5 to 6 (for the interested, results obtained by implying γ from
the Merton optimum are presented in Appendix B).

4.2 No Pension Annuities

In Table 1, we present the optimal spending rate as a function of age (65, 70 and 75) and asset allocation
(0%, 20%, 60% and 80%) without any pension income. We note that since the asset return is stochastic, we
can no longer be certain about the wealth level at a future time, except for α = 0 case. Instead of starting
with an initial wealth at the age of 65, we compute the optimal spending rate with the same initial wealth of
$100 (thousands) at age 65, 70, and 75. As is expected, the initial spending rate goes up when we increase
the starting age. We also tabulate results from the approximation described in Appendix A.3. The results
obtained using the method in A.3 and the numerical method are different (the difference being less than 2%)
due to approximation errors.

To see the impact of age for the same retiree with a starting wealth of $100 (thousands) at age 65, we have
plotted one realization of the wealth dynamics and corresponding spending rate in Figure 1. It can be seen
that both wealth dynamics and spending rate under stochastic investment return deviate from those under
deterministic (risk-free) return. On the other hand, the general conclusion of a declining wealth and spending
rate over time remains valid. Furthermore, the approximate solution based on the deterministic approach,
whereby the rate is adjusted to the return of the portfolio and solved annually with an updated wealth level,
agrees well with that of the full optimal control solution.

4.3 With Pension Annuities

In Table 2 and Table 3, we present the optimal spending rate as a function of risk aversion and pension
levels for an aggressive, balanced, and conservative asset allocation (80%, 60%, and 20%) for a 65 year old
male and 75 year old male, respectively. We also include the value of the expected wealth depletion age. While
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the initial optimal spending rate (across static, dynamic, and stochastic methods) does not vary significantly,
the realized spending rate over the lifecycle is no longer smooth and varies over a wide range for α = 60%
and even more for α = 80%, as shown in Figure 2.

When α = 0, i.e. deterministic returns, ρ = r, and π is held constant, one expects consumption to
decline as risk aversion (γ) rises. However, when returns are stochastic, this phenomenon isn’t quite true. For
example, in the case of a 65-year old male, Table 2, we observe consumption rising and later falling with an
increase in γ.

Similarly, if α and γ are held constant, we observe that with increasing levels of pensions, a retiree ought
to withdraw more from the account thus depleting the account early. But once again, we find that for a
younger client and low risk aversion level this observation does not quite hold. For example, in Table 2,
for γ = 0.5, the initial consumption upon retirement is $19.609 and $23.658 for pension levels π = $15 and
π = $20, respectively, while the withdrawal rate is $4.609 and $3.658. Observe that regardless of the spending
rate going down, total consumption still rises if pensions are higher.

To better understand what may be at work, let’s take a look at equation (A20). Initial consumption of
a retiree is not only a function of the growth rate, discount rate, and risk aversion but it is also a function
of the mortality rate. Such a phenonmenon can also be observed in Milevsky and Huang (2011) and the
initial consumption’s dependence upon growth rate, discount rate, risk aversion, and mortality can also be
observed in equation (7). Risk aversion (γ) plays a critical role in the calculation of optimal consumption.
While an increase in γ causes an increase in the modal value of life, it also plays a role in determining the
effective valuation rate (r− k) of the actuarial present value function. In a deterministic setting, since ρ = r,
means that k = 0. The initial consumption thus declines as γ increases. See the results (Table 4) of the
fully stochastic HJB solution when α = 0. However, in the non-deterministic case, r is replaced by re, the
effective return rate, which implies that k is no longer zero. Depending upon the value of α and γ, the effective
valuation rate (r − k) of the actuarial present value function in equation (7) along with the modified modal
value (m∗) may lead to a non-monotonic behaviour in initial consumption as γ increases.

As in the case without pension annuities, the optimal spending strategy derived in Milevsky and Huang
(2011) for the deterministic case is quite close to the optimum when adapted to the wealth fluctuation, despite
the fact that it was derived based on a deterministic investment returns.

We also observe that while pension levels have an impact on the optimal spending strategy, optimal
spending appears to be more sensitive to changes in asset allocation. Changes in asset allocation implies
higher volatility of asset returns. When we increase volatility (σ = 25%) we observe not only greater volatility
in consumption but also differences between the solutions from numerical methods and the approximations.
See the bottom two panels in Figure 2.

4.4 Expected Wealth Depletion Age

In Figure 3, we plot the expected wealth depletion age as a function of initial wealth for a 65-year old
male with a normalized pension of $12 invested in a balanced portfolio. We observe that ruin occurs earlier
for less initial wealth. We also plot the expected wealth depletion age as a function of risk aversion (γ). Once
again, wealth depletion occurs later for more risk averse individuals.

In Table 5 we provide the Wealth Depletion Times (WDT) for a 65 year old male, for a $100 investment
at π = 4, 8, 12, 15, 20 (per $100 wealth) and γ = 0.5, 1, 2, 4, and 6. WDT is solved both numerically and
using Monte Carlo Simulations. Observe that as pension levels increase WDT tends to decrease. On the other
hand and as expected, WDT rises with increasing risk aversion.

It is also important to note, that wealth depletion time is shortened only in the context of higher pension
levels. In other words, consumption is not zero but it is equal to pension when wealth gets depleted. Clearly
if a retiree does not have any pensions we see that wealth is depleted at the terminal age; on the other hand,
for those retirees with high levels of pension income relative to their investible wealth, wealth is depleted
much earlier than the terminal age.

5 Conclusion

In this paper we develop the optimal solution to the retirement spending problem from the world of
pensions and retirement income planning. In a practitioner-oriented paper with an emphasis on “ease of
use”, Milevsky and Huang (2011) developed an optimal retirement spending policy for a utility-maximizing
retiree facing a stochastic lifetime but assuming deterministic investment returns. Of course, in the real world
financial returns are unknown, it is natural to question the relevance of Milevsky and Huang (2011) in a world
of stochastic investment returns.

In this paper we solve the retirement spending problem when investment returns are stochastic using
the well-established principles of stochastic control theory and dynamic programming. We impose the non-
borrowing constraint and assume that wealth is non-negative which differs from the classical Merton (1971)
solution. After solving the full problem properly, we compare with the above-mentioned approximation
solution. Our approximate solution is obtained by computing the withdrawal rate using the solution under
deterministic return on a yearly basis, while allowing the wealth process to be stochastic, thus adapting to
current market conditions, when the model is parameterized to realistic (historical) equity and bond return
coefficients.
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In other words, the simplistic approximation – when calibrated properly and frequently – can indeed be
used as an accurate guide for retirement spending policy.
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6 Figures and Tables

Table 1: Optimal retirement spending (in dollars) and expected wealth depletion age for an initial $100 investment, as a
function of age and asset allocation. Assumes no pension income: π = 0, and risk aversion γ = 2.

Numerical Method Results Approximation based on A.3
Age α = 0% α = 20% α = 60% α = 80% α = 0% α = 20% α = 60% α = 80%
65 $6.278 $6.561 $6.988 $7.105 $6.365 $6.676 $7.322 $7.653
70 $7.051 $7.328 $7.755 $7.870 $7.161 $7.469 $8.105 $8.430
75 $8.148 $8.418 $8.851 $8.965 $8.291 $8.598 $9.229 $9.551

Figure 1: Wealth dynamics (left panel) and optimal spending rate (right panel) for one realization, computed using both
the approximate method and the optimal control approach for α = 60% and γ = 2 for a 65 year old male. For comparison
purposes, the solution for α = 0% is also plotted.
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Table 2a: Per $100 Spending Rate & Ruin Age for an Aggressive Asset Allocation at Age 65.

Stock Exposure α = 80%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$6.516 $7.443 $7.564 $7.092 $6.574
89.7 93.1 97.4 103.2 107.5

8
$5.874 $7.268 $7.688 $7.461 $7.091
88.0 90.8 94.5 99.2 102.8

12
$5.164 $7.002 $7.688 $7.648 $7.375
87.1 89.6 92.8 97.0 100.1

15
$4.609 $6.771 $7.646 $7.728 $7.515
86.6 88.9 91.9 95.9 98.7

20
$3.658 $6.350 $7.529 $7.798 $7.670
86.0 88.0 90.8 94.4 97.0

Table 2b: Per $100 Spending Rate & Ruin Age for a Balanced Asset Allocation Age 65.

Stock Exposure α = 60%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$7.456 $7.656 $7.435 $6.925 $6.500
88.4 92.2 96.7 102.5 106.6

8
$7.261 $7.717 $7.648 $7.263 $6.920
86.5 89.7 93.7 98.5 102.0

12
$6.986 $7.687 $7.754 $7.461 $7.170
85.4 88.3 91.9 96.3 99.4

15
$6.751 $7.632 $7.797 $7.564 $7.303
84.8 87.5 90.9 95.1 98.0

20
$6.323 $7.503 $7.826 $7.685 $7.466
84.0 86.5 89.7 93.5 96.2

Table 2c: Per $100 Spending Rate & Ruin Age for a Conservative Asset Allocation Age 65.

Stock Exposure: α = 20%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$9.699 $8.282 $7.242 $6.447 $6.056
85.4 89.9 94.9 100.8 104.7

8
$10.516 $8.920 $7.746 $6.859 $6.431
83.0 87.0 91.5 96.7 100.1

12
$11.172 $9.427 $8.142 $7.175 $6.714
81.5 85.2 89.5 94.3 97.4

15
$11.600 $9.757 $8.398 $7.377 $6.893
80.7 84.3 88.4 93.0 96.0

20
$12.231 $10.241 $8.772 $7.670 $7.150
79.6 83.0 86.9 91.3 94.2
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Table 3a: Per $100 Spending Rate & Ruin Age for an Aggressive Asset Allocation at Age 75.

Stock Exposure: α = 80%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$12.717 $11.338 $10.016 $8.652 $7.778
90.6 94.1 98.4 103.9 107.9

8
$13.361 $11.971 $10.653 $9.354 $8.556
88.9 91.9 95.6 100.3 103.5

12
$13.835 $12.438 $11.111 $9.830 $9.065
87.9 90.7 94.0 98.2 101.1

15
$14.125 $12.726 $11.389 $10.112 $9.361
87.3 90.0 93.2 97.1 99.8

20
$14.525 $13.127 $11.777 $10.496 $9.756
86.6 89.1 92.1 95.7 98.2

Table 3b: Per $100 Spending Rate & Ruin Age for a Balanced Asset Allocation at Age 75.

Stock Exposure: α = 60%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$13.652 $11.542 $9.897 $8.502 $7.718
89.8 93.5 97.9 103.4 107.3

8
$14.661 $12.377 $10.616 $9.176 $8.407
88.1 91.3 95.1 99.8 103.0

12
$15.467 $13.035 $11.166 $9.665 $8.886
87.0 90.0 93.5 97.7 100.6

15
$15.990 $13.459 $11.516 $9.968 $9.176
86.4 89.2 92.6 96.6 99.3

20
$16.756 $14.078 $12.021 $10.397 $9.579
85.7 88.3 91.4 95.2 97.7

Table 3c: Per $100 Spending Rate & Ruin Age for a Conservative Asset Allocation at Age 75

Stock Exposure: α = 20%

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$15.767 $12.102 $9.705 $8.058 $7.313
88.3 92.2 96.8 102.2 105.9

8
$17.530 $13.397 $10.672 $8.801 $7.964
86.5 89.9 93.9 98.6 101.7

12
$18.985 $14.458 $11.454 $9.390 $8.471
85.3 88.5 92.2 96.5 99.3

15
$19.951 $15.159 $11.969 $9.774 $8.799
84.7 87.7 91.2 95.3 98.0

20
$21.396 $16.206 $12.732 $10.340 $9.279
83.9 86.7 90.0 93.9 96.4
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Figure 2: The optimal spending rate (left panel) and wealth dynamics (right panel) for two sample path realizations,
computed using both the approximate method (blue) and the optimal control approach (red) for a 65 year old male. The
exact parameters are: risky stock allocation α = 60% (top), α = 80% (middle); pension income π = $12, risk aversion
γ = 2. The bottom panels are examples of high volatility (σ = 25%). For comparison purposes, the solution for α = 0%
is also plotted (black solid line).

Table 4: Per $100 Spending Rate & Ruin Age – Deterministic Returns at Age 65.

Pension in $
Risk Aversion (γ)

0.5 1 2 4 6

4
$10.997 $8.705 $7.202 $6.168 $5.703
83.8 88.5 93.8 99.8 103.7

8
$12.335 $9.664 $7.901 $6.692 $6.154
81.1 85.4 90.2 95.5 99.0

12
$13.436 $10.449 $8.467 $7.109 $6.508
79.6 83.6 88.1 93.0 96.2

15
$14.168 $10.969 $8.840 $7.382 $6.738
78.7 82.5 86.9 91.7 94.8

20
$15.263 $11.746 $9.396 $7.785 $7.075
77.6 81.2 85.3 90.0 92.9
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Figure 3: Expected wealth depletion age as a function of initial wealth (left panel, γ = 2) and as a function of risk aversion
(right panel) for a 65-year old male invested with π = $12 per $100 in a balanced portfolio.

Table 5: Age 65 Results: At what time will the individual deplete their wealth, rationally? A comparison of numerical
PDE methods and Monte Carlo simulations with standard deviations. Assuming the individual begins with $100 and
receives $π in pension income each year. Note that the greater the pension π, all else being equal, the earlier the Wealth
Depletion Time (WDT). Also, the lower the risk aversion γ the earlier the WDT.

π
Aggressive Balanced Conservative

Risk Aversion (γ) Risk Aversion (γ) Risk Aversion (γ)
0.5 1 2 4 6 0.5 1 2 4 6 0.5 1 2 4 6

4
PDE 24.7 28.1 32.4 38.2 42.5 23.4 27.2 31.7 37.5 41.6 20.4 24.9 29.9 35.8 39.7
MC 27.0 30.8 35.6 41.8 46.4 23.0 26.6 31.2 36.9 41.0 23.2 24.4 29.4 35.2 44.0
SD 1.5 1.8 2.3 2.7 3.1 1.5 1.8 2.2 2.7 3.0 0.4 0.7 0.8 0.9 0.8

8
PDE 23.0 25.8 29.5 34.3 37.8 21.5 24.7 28.7 33.5 37.0 18.0 22.0 26.5 31.7 35.1
MC 25.0 28.2 32.2 37.3 41.1 21.2 24.3 28.1 33.0 36.4 17.6 21.6 26.0 31.2 34.6
SD 1.5 1.9 2.3 2.9 3.2 1.4 1.8 2.2 2.7 3.0 0.5 0.6 0.8 0.9 1.0

12
PDE 22.1 24.6 28.3 32.0 35.1 20.4 23.3 27.4 31.3 34.4 16.5 20.2 24.5 29.3 32.5
MC 23.9 26.7 28.8 34.9 38.2 20.1 22.9 26.1 30.7 33.8 16.2 19.8 24.0 28.8 31.9
SD 1.4 1.8 2.4 2.8 3.2 1.3 1.8 2.1 2.6 2.9 0.5 0.6 0.7 0.9 1.0

15
PDE 21.6 23.9 26.9 30.9 33.7 19.8 22.5 25.9 30.1 33.0 15.7 19.3 23.4 28.0 31.0
MC 23.3 25.9 29.2 33.5 36.6 19.5 22.1 25.4 29.5 32.4 15.4 18.9 22.9 25.5 30.5
SD 1.4 1.8 2.2 2.7 3.1 1.3 1.7 2.1 2.5 2.8 0.4 0.6 0.7 0.9 1.0

20
PDE 21.0 23.0 25.8 29.4 32.0 19.0 21.5 24.7 28.5 31.2 14.6 18.0 21.9 26.3 29.2
MC 22.5 24.9 28.0 31.9 31.5 18.8 21.2 24.2 28.0 30.7 14.3 17.7 21.5 25.9 28.7
SD 1.3 1.7 2.1 2.6 3.6 1.2 1.6 2.0 2.5 2.7 0.4 0.5 0.7 0.8 0.9
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A Solution Methodologies

A.1 Closed Form Solution for α = 0

We start by considering a special case where α = 0 and the wealth dynamics is deterministic, which can be
solved using the method of Calculus of Variation. Here we focus on solving the associated Hamilton–Jacobi–
Bellman (HJB) equation:

Vt + rwVw + (π − c∗t )Vw + u(c∗t ) = (ρ+ λx+t)V (A1)

with c∗t = V
−1/γ
w for w ≥ 0 and t ≥ 0.

We seek the solution of the HJB equation in the form V (t, w) = u(ŵ)h(t) where ŵ = w + β(t) for two
unknown functions h(t) and β(t) for w ≥ 0. Using standard arguments, the optimal consumption rate is given
by c∗t = ŵh−1/γ and the HJB becomes:

u(ŵ)
{
ḣ+ γh

1− 1
γ + [(1− γ)r − ρ− λx+t]h

}
+

ŵ−γ(β̇ − rβ + π) = 0,

from which we obtain two equations for h and β as

ḣ+ γh
1− 1

γ + [(1− γ)r − ρ− λx+t]h = 0, (A2)

β̇ − rβ + π = 0, (A3)

where ḣ and β̇ denote time derivatives of h and β.
The value function V can be obtained by using the method of characteristics (for details of the method,

please refer Carrier and Pearson (1976)):

dV

dt
= (ρ+ λx+t)V − u(c∗t ) (A4)

along the characteristics, or the wealth dynamics

dWt

dt
= rWt + π − c∗t (A5)

for Wt ≥ 0. For our purpose, we only need to solve the wealth dynamics and consumption, which is given by
c∗t = Ŵth

−1/γ with Ŵt = Wt + β(t).
We now derive the differential equations satisfied by Ŵt and c∗t as follows. First of all, it is a simple

exercise to show that
dŴt

dt
= rŴt − h−1/γŴt + β̇ − rβ + π.

Using the equation for β, we obtain

dŴt

dt
= rŴt − h−1/γŴt. (A6)

A similar calculation gives us the following equation

dc∗t
dt

=

(
r − h−

1
γ +

ḣ

γh

)
c∗t .

Using the equation for h, we arrive at a simplified equation for c∗t as

dc∗t
dt

=
r − ρ− λx+t

γ
c∗t , (A7)

which can be integrated to yield

c∗t = c∗0 exp

(∫ t

0

ksds

)
(A8)

where ks = (r − ρ − λx+s)/γ and an unknown initial consumption rate c∗0. The wealth equation can be
rewritten as

dŴt

dt
= rŴt − c∗0 exp

(∫ t

0

ksds

)
(A9)

which can be integrated as

W ∗t = exp(rt)

[
Ŵ0 − c∗0

∫ t

0

exp

(
−ru+

∫ u

0

ksds

)]
. (A10)

for t ≥ τ for some unknown wealth depletion time τ . The wealth depletion time and the initial consumption
rate c∗0 can be obtained using c∗τ = π and Wτ = 0, or

c∗0 = π exp

(
−
∫ τ

0

ksds

)
, (A11)

Ŵ0 = c∗0

∫ τ

0

exp

(
−ru+

∫ u

0

ksds

)
. (A12)

These solutions are identical to the ones obtained in section 2, but using a different method.
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A.2 Numerical Method for α > 0

When a risky asset is included, i.e., α > 0, we can solve the HJB equation numerically using a finite
difference approximation. In a short-hand notation, we replace the HJB equation (12) with the following
finite difference equation

V
(n)
j − V (n−1)

j

∆t
+
c1 + |c1|

2

V
(n)
j − V (n)

j−1

∆w
+
c1 − |c1|

2

V
(n)
j+1 − V

(n)
j

∆w
(A13)

= c2
V

(n)
j+1 + V

(n)
j−1 − V

(n)
j

(∆w)2
+ u(c

(n−1)
j )− (ρ+ λ(n))V

(n)
j

for j = 0, 1, ...J and n = 0, 1, ..., N , where

c1 = c
(n−1)
j − π − (α(µ− r) + r)wj , (A14)

c2 =
(ασwj)

2

2
, (A15)

c
(n−1)
j =

(
V

(n)
j − V (n)

j−1

∆w

)− 1
γ

, (A16)

and V
(n)
j is the approximation of V (t, w) on grid point (tn, wj). Note that we have reversed time tn = T−n∆t,

where T = N∆t for a given N . The grid sizes ∆w and ∆t, and the maximum wJ are chosen to ensure that the
numerical method maintains stability and that the effect of the finite domain size 0 < w < wJ is minimized.

The boundary condition at w0 is given either by

V
(n)
0 − V (n−1)

0

∆t
+
c1 − |c1|

2

V
(n)
1 − V (n)

0

∆w
= u(c

(n−1)
0 )− (ρ+ λ(n))V

(n)
0 (A17)

when c
(n−1)
0 < π, or

V
(n)
0 − V (n−1)

0

∆t
= u(c

(n−1)
0 )− (ρ+ λ(n))V

(n)
0 (A18)

when c
(n−1)
0 > π, in which case we set c

(n−1)
0 = π due to the no-borrowing constraint. Finally, the boundary

condition at wJ and the initial condition at t0 = T are given by using the closed form Merton solution as an
approximation.

Please refer to Morton and Mayer (2005) for details on the numerical solution techniques for partial
differential equations.

A.3 Approximate Solution for α > 0

When σ is small or a conservative asset allocation strategy with relatively small α, which is normally the
case for retirement funds, we can use an approximate solution as an alternative to the solution of the stochastic
control problem. The idea is to approximate the solution f by an asymptotic expansion f = f (0) +σ2f (1) +· · ·,
where f = V for the HJB equation or f = Td for the expected wealth depletion time. At the leading order,
the HJB equation becomes

V
(0)
t + rewV

(0)
w + (π − c(0)

t )V (0)
w + u(c

(0)
t ) = (ρ+ λx+t)V

(0) (A19)

with re = α(µ − r) + r and c
(0)
t =

(
V

(0)
w

)−1/γ

for w ≥ 0 and t ≥ 0. Note that this is the same equation for

the α = 0 case with r replaced by re and the solution can be written as

c
(0)
t = c

(0)
0 exp

(∫ t

0

keds

)
(A20)

where ke = (re − ρ − λx+s)/γ. The approximate wealth depletion age τ (0) can be once again obtained by
solving the now approximate (deterministic) wealth dynamics equation

d ˆW (0)
t

dt
= re ˆW (0)

t −
(
h(0)
)−1/γ ˆW (0)

t. (A21)

and setting W
(0)

τ(0)
= 0.

On the other hand, the leading order asymptotic solution of the expected wealth depletion age satisfies
the following equation

∂T
(0)
d

∂t
+ c1

∂T
(0)
d

∂w
+ 1 = 0 (A22)

with c1 = rew + π − c(0)
t . This can be rewritten as

dT
(0)
d

dt
= −1 (A23)
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along the path of W
(0)
t . This equation can be explicitly solved as T

(0)
d (t) = −t+ T

(0)
d (0). Using the fact that

T
(0)
d (τ (0)) = 0 and W

(0)

τ(0)
= 0, we obtain T

(0)
d (0) = τ (0) and T

(0)
d (t) = −t+ τ (0). We note that in principle, the

higher order correction can be obtained by obtaining and solving the HJB and the equation for the wealth
depletion age, which will not be pursued here.

From a practical point of view, we can combine the stochastic wealth dynamics with the approximate
solution as follows. We divide the time into smaller intervals, and over each such a time interval [ti, ti + ∆t],
we apply the approximate solution based on the starting wealth Wti , and in addition to the deterministic
wealth dynamics, we add back the stochastic component as

Wti+1 = Wti exp
(

(re + π − c(0)
t − 0.5(ασ)2)∆t+ ασ

√
∆tBti

)
(A24)

and move on to the next time interval.
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B Using the Merton Optimum to Obtain Gamma

Risk aversion (γ) and allocation to risky assets (γ) are linked by the Merton optimum. In this section we
use the asset allocation to solve for the risk aversion parameter. Specifically, we use the Merton optimum,
α∗ = 1

γ
· (µ−r)

σ2 , to solve for the risk aversion parameter, γ.
Since our model allows for pension income, we do, however, modify the asset allocation to account for any

pre-existing pension or annuities. We do so by calculating the present value of the pensions and aggregate
it with investible wealth. Thus in our setup, the allocation to risk assets, α∗ = αw

w+āxπ
, where āx is the

immediate pension annuity factor. The risk aversion parameter can be obtained using the following equation:

γ =
[

1

α
+
āxπ

αw

]
·
(
µ− r
σ2

)
(B1)

While the above equation shows γ to be dependent upon āx and w, and these values evolve with time, we
calcualte γ at the outset and hold it constant throughout the entire decumulation horizon. The immediate
pension annuity factors are calculated from the annuity market quotes from CANNEX Financial Exchanges.
We took the average of top three quotes from firms with a minimum S&P credit rating of A-. Using the
capital market assumptions used throughout this paper, we determine the risk adjusted equity premium to be
2.1684 and assuming that conservative, balanced, aggressive investors allocate 20%, 60%, and 80% to risky
assets, respectively, we list γ values for various levels of pensions in the table below:

Table B1: CRRA Risk Aversion parameter, γ, for a male aged 65 and 75 at various investment allocations and pension
levels.

Age α π = 0 π = 4 π = 8

65
20% 10.8 18.3 25.8
60% 3.6 6.1 8.6
80% 2.7 4.6 6.5

75
20% 10.8 16.3 21.7
60% 3.6 5.4 7.2
80% 2.7 4.1 5.4

Optimal spending rates and wealth depletion age are summarized in the table below:

Table B2: Per $100 Spending Rate & Ruin Age for male aged 65 and 75 at various investment allocations and pension
levels (γ implied from Merton optimum).

Age Pension in $ α = 20% α = 60% α = 80%

65

0
$3.543 $6.083 $6.513
120.0 120.0 120.0

4
$5.105 $6.478 $6.938
117.8 106.8 104.5

8
$5.379 $6.542 $7.008
113.2 105.5 103.5

75

0
$3.308 $7.211 $7.919
120.0 120.0 120.0

4
$6.190 $8.110 $8.788
114.4 105.6 103.8

8
$6.308 $8.236 $8.914
112.3 104.3 102.6
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